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Experiments have given evidence of strong sensitivity of the stagnation-point 
heat transfer on cylinders to small changes in the intensity of free-stream tur- 
bulence. A similar effect on local heat-transfer rates to flat plates has been 
measured, but only when a favourable pressure gradient is present. In  this work 
it is theorized that vorticity amplification by stretching is a possible, and perhaps 
the dominant, underlying mechanism responsible for this sensitivity. A mathe- 
matical model is presented for a steady, basically plane stagnation flow into 
which is steadily transported disturbed unidirectional vorticity having the only 
orientation susceptible to stretching. The resulting velocity and temperature 
fields in the stagnation-point boundary layer are analysed assuming the fluid to 
be incompressible and to have constant properties. By means of iterative pro- 
cedures and electronic analogue computation an approximate solution to the 
full Navier-Stokes equations is achieved which indicates that amplification by 
stretching of vorticity of sufficiently large scale can occur. Such vorticity, 
present in the oncoming flow with a small intensity, can appear near the boundary 
layer with an amplified intensity and induce substantial three-dimensional 
effects therein. It is found that the thermal boundary layer is much more 
sensitive to the induced effects than the velocity boundary layer. Computations 
indicate that a certain amount of distributed vorticity in the oncoming flow 
causes the shear stress at the wall to increase by 574, while the heat transfer 
there is augmented by 26 % in a fluid with a Prandtl number of 0.74. Preliminary 
computations reveal that the sensitivity of the thermal boundary layer increases 
with Prandtl number. 

1. Introduction 
In  the recent past considerable attention has been given to the problem of the 

influence of oscillations or turbulence on stable laminar boundary layers. The 
stimulus for the interest in this area is due largely to the considerable discrep- 
ancies evident in the results of certain experiments in forced convective heat 
transfer. From the beginning the interaction between turbulence or oscillations 
in the free stream and the boundary layers on solid surfaces was suspected as 
the cause of these discrepancies. An extensive discussion of the background of 
the subject can be found in a report by Kestin & Maeder (1957). 

Numerous investigations, both theoretical and experimental, into the mech- 
anism of the effect of free-stream fluctuations on heat transfer have been under- 
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taken. The measurements of Kestin & Maeder (1957), Kestin, Maeder & Sogin 
(1961), Kestin, Maeder & Wang (1961a;b), Giedt (1951), Sat0 & Sage (1958), 
and Short, Brown & Sage (1960) attest to the considerable influence of the effect 
in certain types of flow. For instance, it has been measured by Kestin, Maeder & 
Sogin (1961) that an increase in free-stream turbulence from 0.5 to 2.7 % will 
increase the heat transfer across a stagnation-point boundary layer by more 
than 40% to a level nearly SO% above the theoretical zero-turbulence pre- 
diction. Heretofore theoretical investigations into this problem have not 
succeeded in predicting influences of such large magnitudes. 

Turbulent flow, in general, contains three-dimensional vorticity and is un- 
steady, since the vorticity is compelled to move with the fluid. Consequently, 
the mathematical formulation of such a flow must be exceedingly complex. It is 
understandable, therefore, that greatly simplified mathematical models were 
treated in the theoretical analyses of this problem. The oldest and possibly the 
simplest was that of a harmonically incompressible main stream containing no 
vorticity. This type of model was analysed by Schlichting (1933). (His calcula- 
tion is very adequately described in the book by the same author, Schlichting 
1960.) He considered small amplitude oscillations and found that a potential 
flow which fluctuates periodically in time gives rise to a steady, secondary 
‘streaming’ motion both near and far from the wall. Schlichting, however, made 
no heat-transfer calculations. Lighthill (1954) studied the response of the boun- 
dary layer adjacent to a fixed cylindrical body when the external flow velocity 
has a steady direction but a magnitude which fluctuates harmonically about a 
steady mean. The approximate solution which he gave was correct only to first 
order in the amplitude of the fluctuations, and consequently did not predict 
secondary flow, a second-order effect. 

Subsequent theoretical efforts dealt with main streams which varied arbi- 
trarily but continuously with time, and also with the special situation of a steady 
main stream with superimposed harmonic oscillations. Moore ( 1951) considered 
both types of flow past an insulated flat plate and defined the circumstances 
under which the boundary-layer flow could be regarded as quasi-steady. This 
work was extended by Ostrach (1955) to include heat transfer to a constant 
temperature plate. The pressure was taken as constant throughout and solutions 
were obtained as a series expansion about the quasi-steady state. The first-order 
deviations of the velocity and temperature profiles from the quasi-steady state 
were computed, and these indicated that positive acceleration (of the wall in 
a frame of reference fixed in the fluid) results in lower heat-transfer rates if the 
wall is being cooled, whereas the heat transfer may or may not increase when the 
wall is being heated. In  his treatment of the case of an external flow which 
fluctuates harmonically about a steady mean Ostrach confined his attention to 
small-amplitude fluctuations and calculated only the first-order alterations to 
the skin friction and heat transfer. He showed that these alterations are generally 
out of phase with the fluctuating velocity, but that the phase shift of the heat- 
transfer rate becomes very small in the incompressible limit. Moore & Ostrach 
( 1956) calculated the time-average characteristics of the compressible boundary 
layer over a flat plate in nearly quasi-steady flow. They found that, in the 
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quasi-steady approximation, the portion of the heat transfer which is indepen- 
dent of Mach number is less on the average than that corresponding to steady flow 
at the average velocity, while that portion which depends on the Mach number 
is also less if the wall is being cooled. 

The analyses of Liii (1957) and Kestin et aZ. (1961b) were concerned with 
harmonic oscillations superimposed on a steady stream. Lin showed that no 
change in the mean velocity profile occurs unless the amplitude of the fluctuating 
part of the main stream velocity varies along the wall. He did not consider the 
heat-transfer problem. Employing a power-series expansion about the steady-flow 
solution Kestin, Maeder & Wang were able to calculate the correction to the time- 
average skin-friction coefficient in the small-amplitude, low-frequency limit. They 
found this to be of second order in the amplitude ratio (fluctuating to steady). 

Flows of this type, consisting of a steady flow with superimposed harmonic 
fluctuations, might be thought of as corresponding to either a plane incom- 
pressible free stream containing vorticity perpendicular to the flow plane or 
perhaps an acoustically disturbed compressible flow. The result that only higher- 
order effects on transport quantities are found in such flows might be due to  the 
fact that the extra vorticity introduced is parallel to the vorticity of the shear 
flow in the boundary layer. The latter is already large, of order Ul6, where U 
is the mean free stream velocity and S is the mean boundary-layer thickness. 
Vorticity of this magnitude is much larger than that which could be due to 
natural turbulence in the main flow if, of course, the scale of this turbulence is 
not small compared to 6. 

The present investigation is concerned primarily with a basically two-dimen- 
sional steady stagnation flow. We are particularly interested in the effect of 
external vorticity having a certain orientation, viz. parallel to the streamlines 
near the boundary. Vorticity with this orientation is susceptible to amplification 
by stretching and thus may appear near the boundary layer with large intensity 
even though it is present with only small intensity a t  some distance from the 
boundary layer. We note that the stagnation-point boundary layer has a large 
favourable pressure gradient and Tollmien-Schlichting instability will not occur in 
such boundary layers. Furthermore, and more importantly, the large influence of 
free-steam turbulence is evidenced only in the presence of a favourable pressure 
gradient (see the papers by Kestin & Maeder 1957 and Kestin et al. 1961b). 

The interaction between vorticity in the external flow and the two-dimensional 
stagnation-point boundary layer has also been considered by Stuart ( 1959). 
He obtained an exact solution of the incompressible Navier-Stokes equations 
when the oncoming flow contains vorticity of constant magnitude but whose 
direction is perpendicular to the plane of flow. Vorticity so oriented undergoes 
no stretching. Stuart found that the change in the shear stress due to external 
vorticity was proportional to the amount of (constant) external vorticity and 
smaller numerically at the wall than in the external stream. 

The axisymmetric version of the same problem was treated by Kemp (1959). 
He gave an exact solution of the incompressible Navier-Stokes equations at  an 
axisymmetric sta,anation point with vorticity in the oncoming flow which varied 
linearly with distance from the axis. In  this case the vortex lines formed closed 
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circles concentric to the axis of symmetry so that stretching would occur as the 
flow spread away from the stagnation point. By the same token such external 
vorticity is parallel to the vorticity due to shearing in the viscous boundary 
layer. Kemp calculated the changes in both shear stress and temperature 
gradient at the wall as functions of the ratio of vorticity in the external flow to 
the average vorticity in the boundary layer. He found these changes to be very 
nearly proportional to this ratio for values of the ratio in the interval 0 to 0.6, and 
that the heat transfer was affected much less than the shear shress in this range. 

In  the following we present a mathematical model designed to describe the 
effect of vorticity having the particular orientation susceptible to amplification 
by stretching when it is steadily transported into the stagnation-point boundary 
layer in a basically two-dimensional flow. Geometrically our model flow is very 
similar to the classical Hiemenz flow, but differs from the latter in that we permit 
the oncoming flow to contain distributed vorticity having the desired orientation. 
The vorticity is distributed periodically over the third dimension which means 
that the normal velocity profile far from the wall has a periodic waviness along 
the direction normal to the plane of the basic flow. (In the Hiemenz flow, being 
truly two-dimensional, the normal velocity is constant along all normals to the 
flow plane.) We will show that such vorticity, having a sufficiently large scale, 
can enter the boundary layer and significantly alter the heat transfer at the wall, 
even though the distortion in the velocity field due to vorticity in the distant 
flow is small compared to the average velocity there. 

2. Mathematical model 
The physical situation of interest here is that of a viscous, incompressible, 

steady flow in the nejghbourhood of a stagnation point into which a certain 
amount of vorticity is steadily transported by the main stream. We are par- 
ticularly interested in observing the evolution of this vorticity as it penetrates 
the boundary layer and the concomitant effects produced on the average value 
of shear stress and heat transfer a t  the boundary. 

As the simplest mathematical model of this flow which still retains the essential 
three-dimensional mechanism of vorticity amplification due to stretching of 
vortex lines, we choose to study a ba.sically plane stagnation-point boundary- 
layer flow (Hiemenz flow), but one which contains a simple type of periodic 
three-dimensionality capable of providing vorticity with the desired orientation. 
The geometry is exactly that of plane stagnation-point flow. We use a co-ordinate 
system with origin a t  the solid boundary which coincides with the (2, 2)-plane. 
The mean flow approaches the wall from y = $00 (where it is parallel to the 
y-axis), divides into two equal semi-infinite streams at the wall which flow away 
from the stagnation point along the positive and negative x-axes. The z-axis is 
perpendicular to the plane of flow. 

The differential equations governing the flow and energy transfer are the 
time-independent vorticity transport equation 

where 
(c*.  0)  0" = (w" .V)  c" + V V 2 0 * ,  

2 0 "  = v x c", 
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the continuity equation 
v . c *  = 0, 

and the time-independent energy transport equation with no dissipation 

(c* . V) T* = (u/Pr) V2T*. (3) 

In  these equations c* is the velocity, 2 0 *  the vorticity, T* the temperature, 
it the kinematic viscosity and Pr denotes the Prandtl number. The physical 
properties of the fluid are assumed constant in all that follows. 

The boundary conditions to be applied at the wall are 

c*(x, 0 , x )  = 0 

and 
while for y -+ co we require that 

T*(x,  0, Z )  = T,, 

c*(x, y, 2 ) .  i = u*(x, y, z )  -+ a, ( 6 4  
a[c*(x, y, 2 ) .  j ]lay = aw*(x, y, z ) /ay -+  - a, (W 

c*(x, y, Z) , k = w*(x, y, Z) + 0 (6c) 

and T*(x, y, z )  -+ T*. (7) 
Here i, j, k are unit vectors in the x-, y-, x-directions. The reciprocal of the 
constant a [ = sec-l] is the time constant of the stagnation point flow; it indicates 
how rapidly the tangential velocity component (u*) outside the boundary layer 
increases with distance from the stagnation point measured along the boundary 
(4. 

We next introduce the dimensionless variables 

(8) I $ 9  q ,5  = (ah)* 5, (a/v)* y, ( a / v ) $ x ,  
c = ( ~ u ) - & c * ,  w = w*/u, T = (T,-T*)/(T,-T*), 

and, in terms of these variables, the system of equations (1)  through (7) becomes 

and 

( C . V ) W  = ( W . V ) C + V 2 W ,  

2 0  = v x c ,  
v . c  = 0, 

c(E, 0,6) = 0, 
T('5075) = 0, 

(c.V)T = (1/Pr)V2T, 

c . i + ( ,  a(c.j)/aq-+-l, c .k+O 
T + 1  as q+co. 

In this system the differential operators are all in terms oft;, q and <. 
We now investigate solutions of the type 

c . i  = u = U(q,  y)$, 
c . j  = w = V(q,C), 
c . k  = w = W(v,<), 
T = T h o .  
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Such solutions differ from the Hiemenz type in that they describe a three- 
dimensional flow field. The three components of vorticity in such a flow field a.re 

2 w . i  = (W,-%) E 2n(7, C), 
2w. j  = U,[, 

2w.k = -q[. 
For convenience the subscript notation is used to represent partial differentia- 
tion with respect to c, 7, c. Substitution of the equations ( 1 6 )  and (17) into the 
system of equations (9) to (11) leads to the following equations for U ,  V and W 

VQ, + wn, - nu = n7, + Q,,, (18) 
(19) 

(20) 
u+V,+w, = 0, (31 )  

VT7 + WT‘ = ( 1 /Pr)  (T,, + T‘g). (22) 

Equations (18), (19) and (20) represent the 6-, 7- and [-components respec- 
tively of the vorticity transport equation (9) and equation (21) is the continuity 
equation. 

uu, + vu,, + wu,, - u,q 4- u,v, = (U,, + Ucr),, 
uu, + J’U,, + wq, + U,? - q w, = ( q,, + u,,)7’ 

The boundary conditions on the functions U ,  V ,  W and T are 

U = V = W = T = O  at y = O ,  (23) 

U - t l ,  V , + - 1 ,  W- tO,  T - t l  as 7+00. (24) 

Upon examination of equations (19) and (20) we notice that, with the aid of 
equation (21), first integrals of these equations can be obtained with respect to 
5 and 7 respectively. The two integrations lead to a single relation 

Uz+ VU,+ WU, = U,,+ C$,+const. 

In  order that this relation satisfy the boundary condition on U as 7 -+ 00 the 
constant of integration must be unity. Hence in the system of equations (18) 
through (22) we can replace (19) and (20) by 

u2+vu7+wu,= q , + u , , + 1 .  ( 2 5 )  

2.1. Specijication of muthematical form of solution 
A t  this point we specify the nature of the three-dimensionality which we permit 
the flow field to have. We seek solutions which are periodic in c. Let 

U =  

V =  

W =  

T =  
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whence if follows that 

(Hereafter the ‘prime ’ notation, when it appears, will signify differentiation with 
respect to 7.)  We shall refer to A simply as the ‘amplitude parameter’. It fs 
an arbitrary factor which controls the magnitude of the ‘ripple’ in the velocity 
field. At this point we do not regard it as a small parameter although the possi- 
bility of its use as such as reserved. 

The quantity k, is the dimensionless wave number of the nth harmonic com- 
ponent of the periodically distributed vorticity. The k,  are general positive 
numbers, not necessarily integers. The only restrictions imposed on the kn are 
that k,+, > k, for all n 2 1 and that k, = nk,. The dimensionless fundamental 
wavelength, A, = 2n-/kl, can be thought of as a measure of the size of the largest 
eddy present. The dimensionless wavelength or eddy size corresponding to the 
nth harmonic component of the vorticity is simply A, = 2n-/kfi. 

It should be emphasized at  this point that the harmonic components u,, un, 
etc., are not coefficients of Fourier cosine or sine representations of a prescribed 
three-dimensional disturbance. For if they were, these functions would be 
uniquely determined by the shape of the prescribed disturbance. In  contra- 
distinction these harmonic components are unknown functions of the co-ordinate 
7 and, presuming solutions exist, are individually governed by the system of 
non-linear differential equations given above. That the basic non-linearity of 
these equations demands the full spectrum and not a finite number of these 
components is clear. Because of the non-linearity the equations governing a 
particular component will be coupled to all other components, and there results 
the exchange of energy among the harmonic components (or eddies of different 
size) characteristic of non-linear systems. 

If we now substitute the equations (26) and (27) into equations (18), (25), (21) 
and (22), we obtain a system of differential equations for U,, V,, T, and the 
harmonic components u,, v,, w,, w,, 8,. First from equation (21), 

u,+ vl, = 0, (28) 

and u,+v;+w, = 0. (29) 

Thus if we define a function $(y) such that 

it follows that 

Secondly, from the definition of Q, equation (17a), 

2k,w, 7 w; + kiv,. (32) 

As an alternative relation between w, and the velocity components of index n, 
combination of equations (29) and (32) yields 

- u: + k i  v, = 2kn w, + u,;,. (33) 
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Upon substitution into equations (18), ( 2 5 )  and ( 2 2 )  we encounter products of 
pairs of the infinite sine and cosine series. With the aid of certain trigonometric 
identities, which for the sake of conciseness here are listed in the Appendix, we can 
rewrite these products as simple sine or cosine series whose coefficients are 
infinite sums composed of the coefficients of the original constituent series. Thus 
from equation (18) we arrive a t  

o i + ( $ ~ , ) ' - k : ~ ,  
m 

= &A E [ W ~ ( V , - ~  + - wi-,)]' - (n/i) wi(ui+, + ox-, - w , - ~ ) .  (34) 

Here and in all subsequent summations 'i ' plays the role of a dummy index. In 
the expansion of the right member of this equation quantities having subscripts 
such as n-i  and i -n  are to be replaced by zero whenever their subscripts are 
zero or negative. 

i= 1 

In  like manner we obtain from equation (25) two equations 
m 

$"' + $$" - $'Z+ 1 = A2 2 u: + +(UiWi)' 
i= 1 

(35) 

m 

and u: + $uk - (2$' + lc;) u, - $"wn = &A x 2ui(ui+, + ui-, + u,-~) 
i= 1 

+ [vi(zLi+, + ui-, + u,-<)]' - (n/i) wi(ui+, - ui-% - u,-J (36) 

The first of these equations relates only those terms which are independent of g,  
whereas the second is the condition that the coefficients of the cosk,g vanish 
individually. Similarly, from the energy equation (22 )  we obtain two final 
equations: m 

T,"+Pr$TA = &AzPr C. (wi8,.)'+uiOi, (37) 
i= 1 
m 

and 0: + Pr@k - lc; S,, = Pr TL W, + *A x [wi(Bi+,, + Oi-, + On_,)]' 
i=l 

+ ui(~,+i + oi-, + 8 , ~  - (n/i) wi(ei+, - oi-, - en-i)]. (38) 

Each of the equations (29 ) ,  (32), (33), (34), (36) and (38) actually represents 
an infinity of equations while equations (35) and (37) are single equations. Hence 
the equations (291, (32) or (33)-(37) constitute two plus a quintuple infinity of 
equations for the same number of unknowns $, u,, w,, w,, wni T, and On, and the 
problem is, in principle, determinate. The equations are ordinary, generally 
non-linear and coupled. In  principle they must be solved simultaneously for 
the unknowns. 

2.2. Boundary conditions 
When we substitute equations (26) into the boundary conditions ( 2 3 )  we obtain 

and 

$ = $' = 0, 

U ,  = V, = W, = 8, = 0 at 7 = 0. 
(39 )  

An additional condition, demanded by the continuity relation, equation (29 ) ,  is 

V k ( 0 )  = 0. (40) 
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The boundary conditions (21) require that 

and 

Additional restrictions which we regard as implicit in the conditions (41) 
are that (42) 

and the same applies to all higher derivatives of these functions. 
It is interesting to note that although vk is required to vanish far from the wall, 

v, i s  not. Thus the periodic 'ripple' in the normal velocity component is allowed 
to have some bounded but non-zero amplitude at the edge of the boundary layer. 
A glance at the equations (17)  for the vorticity components reveals the con- 
sequence of this: The vorticity entering the boundary layer, i.e. being transported 
into it by the external $ow, lies in the plane of the $ow and i s  parallel to the wall. 
The intensity of this vorticity varies sinusoidally in the direction normal to the 
plane of flow. This is the feature of primary importance in our model. The 
vorticity transported into the stagnation-point boundary layer has the only orientation 
susceptible to stretching in the stagnation-pointJ1ow. In what is  to follow we shall see 
that this incident vorticity can generate completely three-dimensional effects within 
the boundary layer which in turn can drastically aflect the heat transfer at the wall. 

2.3. A neutral wavelength or eddy size 
Consider the differential equation (34) governing the w,(7) for very large 7. 
As 7 -+ a, 4 -+ 7, w: -+ 0 and, by virtue of the conditions (41) and (42), the 
non-linear right member also becomes vanishing small. Hence we are left with 
a particularly simple asymptotic form for equation (34) 

d(Tw,)/dT - k i w ,  = 0. 

The solution to this equation is 

w, -+ C,7(+1) (7 -+ oo), 
and we see that for k t  > 1, w, grows as a positive power of 7 as 7 increases, 
while for k i  < 1, w, decreases as a negative power of 7. k: = 1 marks a neutral 
case in which w, has some constant non-zero magnitude at  the edge of the 
boundary layer. The mathematical significance of this is clear: only those 
vorticity components for which En < 1 are compatible with the required con- 
ditions at 7 = co; those components for which k,  > 1 must be suppressed by 
putting the corresponding C, equal to zero. Thus there is a cut-off wavelength 
A, = 27r which must be imposed on the incoming vorticity distribution. Wave- 
lengths shorter than A, (higher harmonics) cannot satisfy the governing equations 
of this problem and hence are not allowed. Wavelengths equal to or longer than 
A,, can enter the boundary layer. 

The physical significance of the neutral wavelength or eddy size seems clear 
enough. As vorticity is transported toward the boundary layer it undergoes 
simultaneous amplification due to stretching and dissipation due to viscous 
action. Vorticity of scale smaller than the neutral size is dissipated more rapidly 
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than it is amplified, and hence decreases as the boundary layer is approached 
(or in other words increases as 7 incremes away from the boundary layer). We 
conclude, therefore, that this smaller-scale vorticity will be dissipated into 
thermal energy before it can reach the boundary layer. On the other hand, 
vorticity of larger scale than the neutral size is amplified more rapidly than it is 
dissipated as i t  approaches the boundary layer. This larger-scale vorticity can 
consequently attain the boundary layer, enter it and bring about the generation 
of three-dimensional effects therein. The neutral scale vorticity (k, = 1) experi- 
ences zero net amplification as it approaches the boundary layer and hence has 
an intensity which does not vary with distance until it encounters the viscous 
layer. It is interesting to note that in terms of the Hiemenz boundary-layer 
thickness 6, the neutral wavelength A, z 2.66. 

It must be emphasized that the absence of the shorter wavelengths at the edge 
of the boundary layer does not mean that these will not appear inside the boundary 
layer. On the contrary the shorter wavelengths (small eddies) will be generated 
through the dissipative action of viscosity on the longer wavelengths (large 
eddies) in the boundary layer. It will be seen from the results to follow shortly 
that this fundamental non-linear phenomenon is faithfully predicted by the 
mathematics of the model. 

We attempted to achieve a solution for the particular case k, = 1. In  this case 
A,, the wavelength of the first harmonic component, is equal to the neutral wave- 
length A, = 277, and A, is therefore the only permissible wavelength in the entering 
vorticity. As a result, the asymptotic conditions to be satisfied by the spectrum 
of vorticity components in the computations described below are 

w,+const. and w , + O ,  n > 1 as 7+00. 

This particular case is only one of an infinite number of possibilities contained 
in the domain of interest, 0 < k, < 1, 1 6 n < 00, and we do not suggest that the 
results to follow are typical of the entire range of possibilities. The neutral-scale 
vorticity is representative, however, in one essential respect, namely that it 
persists as it is convected towards the boundary layer, albeit with no net ampli- 
fication, and finally affects the flow and energy transfer within it. Since the 
prime objective of this analysis was to calculate the changes provoked in the 
boundary layer, as a means of detecting any disparity in the sensitivities of the 
velocity and temperature distributions, this factor was important in our choice 
of a numerical example. We wish to emphasize again that the nature of the 
vorticity content of the oncoming flow is something which is imposed in this 
theory, and it is our intention to examine additional cases in which k, > 1. 

3. Approximate solutions by electronic analogue computer 
In  addition to being infinite in number the equations we wish to solve are 

coupled in very complex ways. There is, of course, no hope of achieving an exact 
and complete solution. However, there is a good possibility of obtaining an 
approximate solution which is very close to the exact one, provided the spectra 
of the magnitudes u,, urn, w,, 0, tail off rapidly enough with increasing n. If this 
be the case the system of ordinary differential equations can be conveniently 
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solved approximately on an electronic analogue computer and, by iteration, 
rapid and accurate convergence to the exact solution would be possible. 

Using a PACE TR-10 Analogue Computer, we obtained first approximate 
solutions for q5, w,, v,, ul, w,, T, and 8, for the case k, = 1 and Pr = 0.74. These 
solutions were then used to obtain first approximations for w2, v2, u2, to2 and H 2 .  
On the basis of a comparison between the second harmonics and the first we were 
able to conclude that, in this particular case, the next higher harmonics would 
be of inconsequential magnitude. Finally, we computed second approximations 
for q5 and T,. These last results gave evidence of a marked difference in the sensi- 
tivities of the mean shear stress and the mean heat transfer a t  the wall to the 
presence of the vorticity. (In this work ‘mean ’ will always signify an average over 
the third dimension y.) For the particular numerical value assigned to the 
intensity of the incoming vorticity in the computations the wall shear stress was 
increased by 5 yo while the heat transfer increased by 26 yo. 

We now proceed to discuss the computations in more detail and to present the 
graphical solutions obtained as the direct output of the computer. The discussion 
will not cover the details of electronic simulation such as scaling, circuitry, etc., 
since these are incidental matters and would consume an excessive amount of 
space. 

A first approximation for q5, denoted by q5(d, was obtained by solving the 
homogeneous version of equation (35), 

4;;) + $4,) &) - q5& + 1 = 0, (43) 

#(do) = 5ql,(O) = 0 3  (44) 
&,)+ 1 as q+m. (45) 

The function &), displayed in figure 1, is exactly the Hiemenz flow solution 
discussed in the book by Schlichting (1960). The value found for the wall shear 
stress, q5:)(0) was 1.237 which differs by only 0.36% from the corresponding 
value calculated by Howarth and given by Schlichting. The electronic circuit 
simulating equation (43) was then used to generate q5(,) for use in the calculation 
of the first approximation for To(,) which satisfied 

with the boundary conditions 

T;k1, + 2% $0 T&l) = 0,  ( 46) 
T , ( l i O )  = 0,  %(I)+ 1 as q+m, (47) 

with Pr = 0.74. The value found for T;(,)(O), which is proportional to the heat 
transfer at the wall, was 0.509. By comparison, the numerical result calculated 
by Squire and tabulated in Schlichting (1960) is 0.495 for Pr = 0.7. Figure 2 
shows the function Too and its first derivative. It is interesting to note that in 
the pure two-dimensional flow the thickness of the thermal boundary layer in 
the case when Pr = 0.74 is about 1-5 times that of the velocity boundary layer. 

The next step in obtaining the first approximation was the simultaneous 
solution for wl(d and vul(d. The governing approximate equations were taken to 
be the homogeneous version of equation (34) 

4 1 )  + ($(DWl(l))’ - Wl(1) = 0 (48) 
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and equation (33) minus the u; term 

The boundary conditions imposed were 

and 

Although wl(,) appears to be independent of vl(,) in this approximate framework 
it is indeed coupled to v,(,) through the boundary conditions. There are no 
explicit boundary conditions on the vorticity, hence the necessity for simul- 
taneous solution. 

The u; term was omitted from equation (49) out of economic necessity, because 
at this point there was no machine capacity remaining to permit simultaneous 
solution for ul(,). (It will be recalled that, in addition to the two second-order 
equations for was kept on the 
machine as a function generator. These three equations required a total of seven 
integrating networks and the particular computer had only eight. The eighth 
was used to generate a linear time base for the plotting instrument.) We had no 
prior suspicion of weak coupling between u, and v, and hence no guarantee that 
this step was a good first approximation. Fortuitously it happened that ul(,) and 
uiCl) were smaller than vl(l) and by at least an order of magnitude so that, 
in restrospect, the assumption of a weak u, influence on the (u,, v,)-system was 
quite good. This was very fortunate in view of the machine limitation mentioned 
above, for the necessity of solving for w,, v1 and u1 simultaneously would have 
complicated our work considerably. As it was, this calculation was the most 
difficult to perform since it entailed finding two unknown initial conditions, 
viz. w,(O) and o;(O), instead of the usual one. 

Since the equation governing w , ( ~ )  is both linear and homogeneous, there must 
be an arbitrary factor associated with the solution, Thus we see the utility of the 
amplitude parameter A .  In  solving for we strived to adjust the initial 
conditions so that vl(lJ would be of order unity at the edge of the boundary layer. 
(In the computation, ‘order unity’ was, of course, established by the capability 
of the machine.) According to equation (49), 2w1(,) would then also be of order 
unity at large y. Having set vl(,) z 1 and 7 --f co, we could then in subsequent 
calculations control the absolute size of the incoming vorticity through regulation 
of A .  As in the case of w,, the relative size of the functions ul, w, and 8, is esta- 
blished once the magnitude of v, is set. The second criterion used in the search 
for the unknown conditions W , ( ~ ) ( O )  and w;(,,(O) was that v&) vanish asymptotic- 
ally at large ?. This was the most sensitive condition on vl(,) that could be con- 
veniently imposed in the course of the integration. 

Our procedure consisted of first fixing one of the unknown conditions, viz. 
w1(,,(0). Then, while observing the function on the screen of an oscilloscope 
with the computer operating in a rapid repetitive mode, we adjusted the ratio 
of the two unknown voltages (simulating w,(,)(O) and &)(O))  until the desired 
asymptotic behaviour was achieved. By trial and error we finally succeeded in 

and vl(,,, the third-order equation for 
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satisfying our dual criteria on both the magnitude and curvature of vl(l) a t  large 7. 
Figure 3 shows the best solutions obtained.for vl(,) and w ~ ( ~ ) .  It can be seen therein 
that v~cll  retains a small negative value a t  large 7. As a matter of fact this error 

FIGURE 3. First approximations to first harmonic components 
of vorticity, velocity and temperature distortions k ,  = 1. 

lies within the limits of accuracy of the machine; for it was not possible to set 
the potentiometers controlling the initial conditions, or any of the other coeffi- 
cients, sufficiently accurately to suppress completely certain exponentially 
growing complementary functions at  values of 7 as large as 5 or 6. 

It is also interesting to note that o ~ ~ ( ~ )  changes sign within the boundary layer. 
We can anticipate this behaviour by examining the complete solution of equation 
(19) for vl0. It is 

We see that if v,(~) is to be bounded as n-tco the integral-coefficient of the 
positive exponential must vanish at  least as rapidly as e-11. Since the function 
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e-a in the integrand is always positive, it follows that wl(l) must be negative for 
a certain interval of values of a. 

The first approximation to U~(U~(~)) was obtained by solving equation (3G) 
minus the infinite sum of non-linear interaction terms 

with the boundary conditions 
U l ( d 0 )  = 0 ( 5 3 )  

and ul(l) + 0 as 71 -+ co. (54) 

In  this case the function q5:l)vl(l) was programmed onto a variable-function diode 
generator which simulates any desired function from ten straight-line segments. 
Solution to this equation was quite straightforward otherwise. The unknown 
initial condition on u&O) was determined so as to give the proper behaviour at  
large 7. Figure 3 shows the function ul(l) and its first derivative, We see that the 
maximum value of 0.70. 
Again at 7 = 2, I U ~ ( ~ ) I  passes through a maximum, and I U ; ( ~ ) I  0.012 there while 
12w101 0.67 at the same location. Hence we feel justified in concluding that 
omission of ui0 from the equations for vl(l) and wl(l) could result in an error of 
5 % at most in the corresponding solutions. 

is about 0.027 occurring at 7 = 0 where ~ 2 w l ( l ) ~  

According to equation (29), we must have 

w1 = - v; - ul. 

Examination of figure 3 reveals that the functions and ul(l) both attain their 
maximum magnitudes in the neighbourhood of 7 = 1.3 wherein ( u ~ ( ~ ) (  is only 
about G yo of I V ; ( ~ ) ~ .  Hence, we took 

Wl(1) = - v h  ( 5 5 )  

as a sufficiently accurate first approximation for wlt1). 
The first approximation to 8, was obtained by solving 

OY(1) + Pr $(I) G I )  - 4 ( 1 )  = PrG(lPl(1) ( 5 6 )  

with Ol(ld0) = 0,  dl(1, + 0 as 7 -+ a. (57) 

The solution corresponding to Pr = 0.74 is also given in figure 3. 
In  order to compute first approximations to w2 and v2 it was essential to retain 

in equation (34) a t  least an approximate representation for the infinite sum of 
non-linear interaction terms. The reason for this is that there are no bounded 
solutions to the system comprised of the homogeneous version of equation (34) 
and equation (33) (minus the uk term) for n 2 2 .  That this is so can be understood 
by referring again to our earlier discussion of the asymptotic solution for w,. 
As the approximation to the right member of equation (34) we took 

*A [(~1(1)V1(1))' + %(l, Wl(1)I =k +A EW;(L)Vl(l) - Wl(1) ";(Dl 
wherein we have made use of equation ( 5 5 ) .  Hence the approximate equations 
used for the computation of w2(,) and v2(1) were 

4 1 )  + ( A 1 ) w 2 d '  - 4w2m = P[41)vl~l) - wl(l)v~(l)l (58) 
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and 41) - 4vw = - 4(+2,(1), (59) 

subject to @uZCl)(O) = %l)M = 0 (60) 

(61) and wZt1), etc. + 0 as 7 + GO. 

The function [oi(llvl~l~ - wl(l)v;(Q] was generated by means of the variable- 
function diode generator and the factor &A was controlled by a potentiometer 
setting. E’igure 4 shows the solutions obtained for A = 1. Since equations (58) 
and (59) are linear the numerical magnitudes shown in figure 4 may be simply 
scaled linearly for any other values of A ;  e.g. for A = 10 we need only multiply 

, I? 

FIGURE 4. First approximation to second harmonic components of vorticity, vclocity 
and temperature distortions k, = 1, magnitudes shown for A = 1 .  

the indicated ordinates by 10, etc. We call attention to the smallness of these 
magnitudes. For A x 10, ]v2(1)Jmax, occurring near y = 1, is less than 10% of 
the local value of lvl(l)l. The maximum value of ] w ~ ( ~ ) ]  occurs at  the wall and is 
about an order of magnitude smaller than Iwl(l)I at the wall when A x 10. We 
notice also that generation of 02(1) commences a t  about the edge of the classical 
stagnation boundary layer (y A 2.4). By comparison with figure 3, we see that 
within the interval 2.4 < 7 < 0.9, 02(1) rises to its first maximum while ol(l, 
decreases steadily toward zero. This brings to mind the fundamental non-linear 
mechanism of spectral interaction prevalent in true turbulent flow in which large 
eddies give up kinetic energy to small eddies. We see also that after decreasing 
to zero (at different locations within the boundary layer) both wl(l) and w,(,, 
undergo one final amplification in the vicinity of the wall and attain relatively 
large magnitudes at the wall. 

Also clearly evident in figures 3 and 4 is the generation of a three-dimensional 
velocity field. Since - w ; ( ~ )  and --v;(~) the growth and decay of 
v ; ( ~ )  and v ; ( ~  depicted in these figures is a good illustration of how the g velocity 
component develops within the boundary layer. 
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In an exactly similar way solutions were obtained for u2(l) and 02(1) and these 
are also displayed in figure 4 for A = 1. 02(, was calculated for Pr = 0.74 only. 
The approximate differential equations and boundary conditions satisfied by 
u2(1) and 8,(,) are the following: 

G ( 1 )  + #(1)4(1)  - (a& + 4) %1) = *A[3v2(1)&) + 2U?(l) + %1)4(1) - 4 ( l P 1 ( 1 ) 1 >  (62) 
U2(1)(0) = 0, + 0 as ?1 + a, (63) 

( 6 4  

02(,(0) = 0, 02(,, --f 0 as 7 --f co. (65) 

%'(I) + Pr %I) - 40m = WW2Tb1) ~ 2 ( 1 )  + ~ 1 )  %I) - 4 1 )  h 1 ) 1 2  

In each case the function v2(1) is that depicted in figure 4 for A = 1. The right 
members of equations (62) and (64) were, as before, programmed on the variable- 
function generator which then participated directly in the computation. 

3.1. Distortion of the basic $ow and heat transfer 
The final computations which we conducted were expected to  reflect the influence 
of the three-dimensional effects on the character of the mean flow and tem- 
perature fields. We used the first approximations to the first and second harmonic 
quantities to calculate second approximations to q5 and To, i.e. &) and To(z). 
The equations solved and the associated boundary conditions are 

#& + $ 4 2 ) .  5G) - @;;I + 1 = A2(41) + +(%(l)%l))f + A2[4(1) + * ( ~ 2 ( 1 ) ~ 2 ( 1 ) ) ' 1 1 >  (66) 

A d o )  = &,(O) = 0, (67) 

&)+ 1 as 7 +a, (68) 

+ PTAl) Tb(21 = +A2Pr{ul(l) h l )  + (%l) 4(1))'  + A2[U2(1P2(l) + (~2(1)4(1)) '1}  (69) 
and %(2)(0) = 0, %(2) --f 1 as 7 +a* (70) 

The use of the function &) in equation (69) rather than q5(2), which was available 
for the integration of this equation, was compelled by the limited capacity of the 
computer. It will be seen, however, in the results to follow that &) and &l) 

differed little. The solutions to these systems are displayed in figures 5 and 6 for 
one particular value of A ,  viz. A = 8. This value was used in the computation 
for no other reason, but that it gave rise to a clearly discernible alteration of the 
mean flow field as characterized by &). In  figure 5 we can compare $(2) and &), 

the latter being identically the Hiemenz solution corresponding to A = 0,  and 
we see that the mean shear stress a t  the wall, $", has increased from 1.237 to 
1.397, a change of 4.85 %. When we make the analogous comparison in figure 6, 
however, we observe that the mean temperature gradient at the wall, Th, has 
increasedfrom 0.509 ( A  = 0) to 0.639, a gain of 26.0%. Thus we discover amarked 
difference in the sensitivities of the velocity and temperature boundary layers 
of the mean flow and temperature fields to the entrance of the distributed vor- 
ticity. We recall that high sensitivity of the thermal boundary layer to small 
changes in the intensity of free-stream turbulence when a pressure gradient is 
present has been encountered in experiments. 

The question is immediately raised as to the reasons for this difference in 
sensitivity. In  an attempt to answer this we are led first to examine the right 
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Magnitude of distortion shown for A = 8. 
FIGURE 5. Approximate distortion of the mean flow field. 

0 1 2 3 4 5 6 

7 
FIGURE 6. Approximate distortion of the mean temperature field 

magnitude of distortion shown for A = 8. 



Heat transfer in the stagnation-point boundary layer 515 

members of the differential equations (66) and (69) which govern the functions 
q5(2) and for it is because of these additional terms that q5(2) and q(,) differ 
from their correspondents in the undisturbed or Hiemenz flow field. Figure 7 
shows the two right members in question. The right member associated with 
q5(,) is labelled M ,  and the other N .  We note, first, that the function N is con- 
sistently larger than M, the maximum amplitude of the latter exceeding that of 
the former by nearly a factor of two. Secondly, we see that the function N- is 
clearly not a small inhomogeneity with respect to the homogeneous version of 
equation (69). It is, in fact, comparable in magnitude to the terms appearing in 
the left member of this equation. Since equation (69) is linear the difference 

FIGURE 7 .  Functions regresenting the approximate distorting influence 
of added vorticity on the mean flow and temperature distributions. 

between the functions To(, and To(,), i.e. the distortion provoked by the vorticity, 
is just the particular integral. This particular integral may be visualized by 
comparing To(,) and To(,) in figure 6. We see there that the largest distortion in the 
mean temperature profile occurs near the edge (7 A 3.4) and outside the velocity 
boundary layer. Just outside the velocity boundary layer the difference 

- !&,) attains a maximum magnitude of about 0.16 or roughly 17 % of Tocl, 
locally. Within the velocity boundary layer the maximum difference is approxi- 
mately 0.07, but the relative distortion ranges as high as 25 yo. 

We can go one step further and examine the cause for the different magnitudes 
possessed by the functions M and N .  According to equations (66) and (69) the 
largest contributions to these functions come from the terms ( U , ( , ) W ~ ( ~ ~ ) ~  in M 
and ( ~ l ( l ) ~ l ( l ) ) r  in N .  Then we see from figure 3 that the function 0,(,), although 
similar in shape to ul(,), is consistently greater than the latter. The maximum 
amplitude of O,,,) is more than twice that of ul(,). Examination of figure 4 reveals 
a similar relationship between 02(,) and u , (~ .  Thus we can conclude that the more 
pronounced influence of the added vorticity on the mean temperature profile is 
due partly to the fact that the harmonic components 0, of the periodic tem- 
perature variation are larger than the corresponding harmonic components u , ~  
of the periodic variation in the x- or <-component of velocity. 

We have drawn attention to the consistently smaller magnitude of the function 
M as one plausible reason for the relatively smaller distortion of the velocity 
field within the boundary layer. Nevertheless, the function M is still of sub- 
stantial magnitude relative to the other terms in the differential equation for 
#(*. We may, for instance, regard the function Mas an additional effective pressure 

33-2 
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gradient due to three-dimensional effects. The pressure gradient in the Hiemenz 
flow is represented by the term unity., so that our boundary-layer equation 
differs from Hiemenz’ by an additional 7-dependent pressure gradient. Although 
this additional pressure gradient attains a magnitude as large as 20% of the 
constant part, the resulting function differs from the Hiemenz function &, 
by 5% a t  most. It is believed that the complete explanation for this small 

FIGURE 8. Qualitative variation of velocity component. 

distortion lies in the non-linear character of the subject differential equation and 
in the highly restrictive nature of the boundary conditions at the wall. In  
addition to the explicit conditions on the function &) and its first derivative at 
7 = 0, the fact that M(0)  = 0 effectively requires that #&(O) = - 1. Thus the 
lowest derivatives which can vary at the wall are the second and the fourth. 
Under these circumstances it becomes obvious that the two functions q5(1) and 
&) can differ very little for small values of 7, i.e. near the wall. 

In  figure 8 we attempt to depict in a qualitative way the three-dimensional 
velocity field in the neighbourhood of the stagnation point. Figure 9 shows the 
variation of the ratio r = A I V ~ ( ~ ) / /  IV,,,,I with normal distance from the stagnation 
point. The numerical magnitudes indicated on the graph are calculated for 
A = 8. For large 7 the ratio decreases very nearly as 7-l. We see from this last 
graph that the magnitude of the disturbance used in the calculation of the dis- 
tortions displayed in figures 5 and 6 corresponds roughly to a 10 % ripple in the 
normal velocity profile at a distance 7 = 70, or about 30 boundary-layer widths 
from the wall. 
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3.2. Preliminary results for the case Pr = 7 

In so far as they bear upon'the phenomenon of heat transfer in the stagnation- 
point boundary layer the numerical results presented above can be regarded as 
representative for most common gases. It is of interest to know whether the 
sensitivity of the thermal boundary layer would be significantly different in a 
fluid with Prandtl number substantially greater than unity. We made some 
preliminary computations for the case Pr = 7.0, corresponding to water at  about 
60 O F ,  and the results indicated a markedly greater sensitivity of the heat transfer 
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FIGURE 9. Approximate ratio of ripple amplitude to mean velocity for the 
normal velocity component T = A ]wl( l l \ / ]  V,,(l)l plotted for A = 8. 

than that calculated for Pr = 0.74. To be specific we found that neutral-scale 
vorticity characterized by the same intensity value, A = 8, and thus capable 
of effecting the same 5% increase in the mean wall shear stress, provoked a 
70% increase in the mean temperature gradient at  the wall. Intuitively we 
expect this effect of the Prandtl number because it occurs as a coefficient of the 
right member of the equation for and hence magnifies or attenuates any 
given distorting influence according to whether it is greater or less than unity. 
Actually the influence of the Prandtl number on the particular integral is more 
involved than this since it occurs in the left member of the differential equation 
as well and since the functions 0, also depend on Prandtl number; preliminary 
computations for 01(1) corresponding to Pr = 7.0 show this function to be gener- 
ally greater in magnitude and in slope than el(,, corresponding to Pr = 0.74. 
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4. Conchding remarks 
We have presented a mathematical model for the interaction of vorticity in 

the oncoming flow with the two-dimensional stagnation-point boundary layer. 
The essential feature of the model is that the vorticity added to the oncoming 
flow is unidirectional and oriented so that the vortex lines are susceptible to 
stretching. An incompressible, constant-property fluid was assumed throughout. 
Employing iterative techniques and an electronic analogue computer we have 
obtained an approximate solution to the full Navier-Stokes equations as they 
apply to this model. The heat-transfer problem was treated simultaneously. 
This approximate solution indicates that: 

(1)  Amplification by stretching of vorticity of sufficiently large scale can 
occur. As a consequence, such vorticity, if present in the oncoming flow with a 
smal1 intensity, can appear near the boundary layer with an amplified intensity. 

(2) There is a neutral scale for vorticity, about 2.6 times the Hiemenz boundary- 
layer thickness, which is transported by the stagnation flow to the boundary 
layer with no net amplification or dissipation. Vorticity of smaller scale is dis- 
sipated before it reaches the boundary layer while the larger-scale vorticity 
undergoes net amplification until it reaches the boundary layer. 

(3) This vorticity can enter the boundary layer and induce substantial three- 
dimensional effects therein. The thermal boundary layer is apparently much 
more sensitive to the induced effects than the velocity boundary layer. According 
to our computations a certain amount of distributed vorticity in the oncoming 
flow causes the shear stress a t  the wall to increase by 5 % while the heat transfer 
there is augmented by 26 yo in a fluid with Prandtl number equal to 0.74. The 
sensitivity of the thermal boundary layer increases with Prandtl number. 

The computations reported in this work were performed for the particular case 
of an oncoming flow which contains only the neutral-scale vorticity. Vorticity 
of smaller scale was found to be generated within the boundary layer by non- 
linear processes. In  the opinion of the authors, i t  would be instructive to carry 
out the computations for an oncoming stream which contains vorticity of scale 
larger than the neutral. Such a vorticity content would correspond more closely 
to the physical situation in a true turbulent stream. 

The research described in this paper is part of the research program of heat 
transfer in unsteady flows of the Aeronautical Research Laboratories, Office of 
Aerospace Research of the U.S. Air Force whose support is gratefully 
acknowledged. 

Appendix. Trigonometric identities 
We start with 

co W 

m = l  v = l  
= C a, C b,sink,asink,cr 

00 m 1 "  
= - C a,( C b,cos(k,-kv)a- C bvcos(k,+kv)a 
2,=1 v = l  v= 1 
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Since k,  = mk, and k,, = vkl) k,  - k, = (m - v) k, = Era-,, etc. Thus we can write 
the right member of equation (A 1) in the form 

1 m I m  m \ 

C a,{ b,,coskn~-,a- 2 b,cosk,+,a . 
‘ m = l  u = l  ,=l i 

By expanding a few terms of each summation within braces and making suitable 
changes in the dummy summation index, we see that the first sum within the 
braces can be rewritten as 

wherein use has been made of the fact that 

cos k,-,, a = cos k,-, a. 

The second sum within the braces of equation (A 2 )  can also be re-expressed as 

m m 

b, cos km+,a = C bp-,, cos k,a.  
,=l p=,+l 

We can then combine equations (A 3) and (A 4) to obtain 

m m m 

b, cos km--va - C b, cos k,+, D: = b, + 2 (btr8-p + b,, - bP-*J cos kp 01. (A 5 )  
u= 1 u= 1 p = l  

In  equation (A 5) a negative or zero subscript on a coefficient b, means that we 
must replace that coefficient by zero since 6, is not defined for 1’ < 0. Finally, 
we arrive at the identity of desired form 

m 

m 

= 1 5 a,(b,,,+ 2 (b,-p + bm+p - bP-,) cos k , a  
2 m = l  p=1 

In  an entirely similar manner we derive two additional identities 

( 2  a,cosk,a)  ( 2  00 b,cosk,a 

m = l  u= 1 

m= 1 

m 
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